559 research outputs found

    Survival of icy grains in debris discs. The role of photosputtering

    Full text link
    We put theoretical constraints on the presence and survival of icy grains in debris discs. Particular attention is paid to UV sputtering of water ice, which has so far not been studied in detail in this context. We present a photosputtering model based on available experimental and theoretical studies. We quantitatively estimate the erosion rate of icy and ice-silicate grains, under the influence of both sublimation and photosputtering, as a function of grain size, composition and distance from the star. The effect of erosion on the grain's location is investigated through numerical simulations coupling the grain size to its dynamical evolution. Our model predicts that photodesorption efficiently destroy ice in optically thin discs, even far beyond the sublimation snow line. For the reference case of beta Pictoris, we find that only > 5mm grains can keep their icy component for the age of the system in the 50-150AU region. When taking into account the collisional reprocessing of grains, we show that the water ice survival on grains improves (grains down to ~ 20 um might be partially icy). However, estimates of the amount of gas photosputtering would produce on such a hypothetical population of big icy grains lead to values for the OI column density that strongly exceed observational constraints for beta Pic, thus ruling out the presence of a significant amount of icy grains in this system. Erosion rates and icy grains survival timescales are also given for a set of 11 other debris disc systems. We show that, with the possible exception of M stars, photosputtering cannot be neglected in calculations of icy grain lifetimes.Comment: 12 pages, 9 figures. accepted by A&

    Dynamics of Planetesimals due to Gas Drag from an Eccentric Precessing Disk

    Full text link
    We analyze the dynamics of individual kilometer-size planetesimals in circumstellar orbits of a tight binary system. We include both the gravitational perturbations of the secondary star and a non-linear gas drag stemming from an eccentric gas disk with a finite precession rate. We consider several precession rates and eccentricities for the gas, and compare the results with a static disk in circular orbit. The disk precession introduces three main differences with respect to the classical static case: (i) The equilibrium secular solutions generated by the gas drag are no longer fixed points in the averaged system, but limit cycles with frequency equal to the precession rate of the gas. The amplitude of the cycle is inversely dependent on the body size, reaching negligible values for ∌50\sim 50 km size planetesimals. (ii) The maximum final eccentricity attainable by small bodies is restricted to the interval between the gas eccentricity and the forced eccentricity, and apsidal alignment is no longer guaranteed for planetesimals strongly coupled with the gas. (iii) The characteristic timescales of orbital decay and secular evolution decrease significantly with increasing precession rates, with values up to two orders of magnitude smaller than for static disks. Finally, we apply this analysis to the Îł\gamma-Cephei system and estimate impact velocities for different size bodies and values of the gas eccentricity. For high disk eccentricities, we find that the disk precession decreases the velocity dispersion between different size planetesimals, thus contributing to accretional collisions in the outer parts of the disk. The opposite occurs for almost circular gas disks, where precession generates an increase in the relative velocities.Comment: 11 pages, 9 figures. Accepted in MNRA

    Collisional Velocities and Rates in Resonant Planetesimal Belts

    Full text link
    We consider a belt of small bodies around a star, captured in one of the external or 1:1 mean-motion resonances with a massive perturber. The objects in the belt collide with each other. Combining methods of celestial mechanics and statistical physics, we calculate mean collisional velocities and collisional rates, averaged over the belt. The results are compared to collisional velocities and rates in a similar, but non-resonant belt, as predicted by the particle-in-a-box method. It is found that the effect of the resonant lock on the velocities is rather small, while on the rates more substantial. The collisional rates between objects in an external resonance are by about a factor of two higher than those in a similar belt of objects not locked in a resonance. For Trojans under the same conditions, the collisional rates may be enhanced by up to an order of magnitude. Our results imply, in particular, shorter collisional lifetimes of resonant Kuiper belt objects in the solar system and higher efficiency of dust production by resonant planetesimals in debris disks around other stars.Comment: 31 pages, 11 figures (some of them heavily compressed to fit into arxiv-maximum filesize), accepted for publication at "Celestial Mechanics and Dynamical Astronomy

    Secular dynamics of planetesimals in tight binary systems: Application to Gamma-Cephei

    Full text link
    The secular dynamics of small planetesimals in tight binary systems play a fundamental role in establishing the possibility of accretional collisions in such extreme cases. The most important secular parameters are the forced eccentricity and secular frequency, which depend on the initial conditions of the particles, as well as on the mass and orbital parameters of the secondary star. We construct a second-order theory (with respect to the masses) for the planar secular motion of small planetasimals and deduce new expressions for the forced eccentricity and secular frequency. We also reanalyze the radial velocity data available for Gamma-Cephei and present a series of orbital solutions leading to residuals compatible with the best fits. Finally, we discuss how different orbital configurations for Gamma-Cephei may affect the dynamics of small bodies in circunmstellar motion. For Gamma-Cephei, we find that the classical first-order expressions for the secular frequency and forced eccentricity lead to large inaccuracies around 50 % for semimajor axes larger than one tenth the orbital separation between the stellar components. Low eccentricities and/or masses reduce the importance of the second-order terms. The dynamics of small planetesimals only show a weak dependence with the orbital fits of the stellar components, and the same result is found including the effects of a nonlinear gas drag. Thus, the possibility of planetary formation in this binary system largely appears insensitive to the orbital fits adopted for the stellar components, and any future alterations in the system parameters (due to new observations) should not change this picture. Finally, we show that planetesimals migrating because of gas drag may be trapped in mean-motion resonances with the binary, even though the migration is divergent.Comment: 11 pages, 9 figure

    Collisional dust avalanches in debris discs

    Get PDF
    We quantitatively investigate how collisional avalanches may developin debris discs as the result of the initial break-up of a planetesimal or comet-like object, triggering a collisional chain reaction due to outward escaping small dust grains. We use a specifically developed numerical code that follows both the spatial distribution of the dust grains and the evolution of their size-frequency distribution due to collisions. We investigate how strongly avalanche propagation depends on different parameters (e.g., amount of dust released in the initial break-up, collisional properties of dust grains and their distribution in the disc). Our simulations show that avalanches evolve on timescales of ~1000 years, propagating outwards following a spiral-like pattern, and that their amplitude exponentially depends on the number density of dust grains in the system. We estimate a probability for witnessing an avalanche event as a function of disc densities, for a gas-free case around an A-type star, and find that features created by avalanche propagation can lead to observable asymmetries for dusty systems with a beta Pictoris-like dust content or higher. Characteristic observable features include: (i) a brightness asymmetry of the two sides for a disc viewed edge-on, and (ii) a one-armed open spiral or a lumpy structure in the case of face-on orientation. A possible system in which avalanche-induced structures might have been observed is the edge-on seen debris disc around HD32297, which displays a strong luminosity difference between its two sides.Comment: 18 pages, 19 figures; has been accepted for publication in Astronomy and Astrophysics, section 6. Interstellar and circumstellar matter. The official date of acceptance is 29/08/200

    Against all odds? Forming the planet of the HD196885 binary

    Full text link
    HD196885Ab is the most "extreme" planet-in-a-binary discovered to date, whose orbit places it at the limit for orbital stability. The presence of a planet in such a highly perturbed region poses a clear challenge to planet-formation scenarios. We investigate this issue by focusing on the planet-formation stage that is arguably the most sensitive to binary perturbations: the mutual accretion of kilometre-sized planetesimals. To this effect we numerically estimate the impact velocities dvdv amongst a population of circumprimary planetesimals. We find that most of the circumprimary disc is strongly hostile to planetesimal accretion, especially the region around 2.6AU (the planet's location) where binary perturbations induce planetesimal-shattering dvdv of more than 1km/s. Possible solutions to the paradox of having a planet in such accretion-hostile regions are 1) that initial planetesimals were very big, at least 250km, 2) that the binary had an initial orbit at least twice the present one, and was later compacted due to early stellar encounters, 3) that planetesimals did not grow by mutual impacts but by sweeping of dust (the "snowball" growth mode identified by Xie et al., 2010b), or 4) that HD196885Ab was formed not by core-accretion but by the concurent disc instability mechanism. All of these 4 scenarios remain however highly conjectural.Comment: accepted for publication by Celestial Mechanics and Dynamical Astronomy (Special issue on EXOPLANETS

    Circumstellar disks in binary star systems

    Full text link
    In this paper we study the evolution of viscous and radiative circumstellar disks under the influence of a companion star. We focus on the eccentric {\gamma} Cephei and {\alpha} Centauri system as examples and compare the disk quantities such as disk eccentricity and precession rate to previous isothermal simulations. We perform two-dimensional hydrodynamical simulations of the binary star systems under the assumption of coplanarity of the disk, host star and binary companion. We use the grid-based, staggered mesh code FARGO with an additional energy equation to which we added radiative cooling based on opacity tables. The eccentric binary companion perturbs the disk around the primary star periodically. Upon passing periastron spirals arms are induced that wind from the outer disk towards the star. In isothermal simulations this results in disk eccentricities up to {\epsilon}_disk ~ 0.2, but in more realistic radiative models we obtain much smaller eccentricities of about {\epsilon}_disk ~ 0.04 - 0.06 with no real precession. Models with varying viscosity and disk mass indicate show that disks with less mass have lower temperatures and higher disk eccentricity. The rather large high disk eccentricities, as indicated in previous isothermal disk simulations, implied a more difficult planet formation in the {\gamma} Cephei system due to the enhanced collision velocities of planetesimals. We have shown that under more realistic conditions with radiative cooling the disk become less eccentric and thus planet formation may be made easier. However, we estimate that the viscosity in the disk has to very small, with {\alpha} \lesssim 0.001, because otherwise the disk's lifetime will be too short to allow planet formation to occur along the core instability scenario. We estimate that the periodic heating of the disk in eccentric binaries will be observable in the mid-IR regime.Comment: 12 pages, 15 figures, accepted for publication in A&

    Can gas in young debris disks be constrained by their radial brightness profiles?

    Full text link
    Disks around young stars are known to evolve from optically thick, gas-dominated protoplanetary disks to optically thin, almost gas-free debris disks. It is thought that the primordial gas is largely removed at ages of ~10 Myr, but it is difficult to discern the true gas densities from gas observations. This suggests using observations of dust: it has been argued that gas, if present with higher densities, would lead to flatter radial profiles of the dust density and surface brightness than those actually observed. However, here we show that these profiles are surprisingly insensitive to variation of the parameters of a central star, location of the dust-producing planetesimal belt, dustiness of the disk and - most importantly - the parameters of the ambient gas. This result holds for a wide range of gas densities (three orders of magnitude), for different radial distributions of the gas temperature, and different gas compositions. The brightness profile slopes of -3...-4 we find are the same that were theoretically found for gas-free debris disks, and they are the same as actually retrieved from observations of many debris disks. Our specific results for three young (10-30 Myr old), spatially resolved, edge-on debris disks (beta Pic, HD 32297, and AU Mic) show that the observed radial profiles of the surface brightness do not pose any stringent constraints on the gas component of the disk. We cannot exclude that outer parts of the systems may have retained substantial amounts of primordial gas which is not evident in the gas observations (e.g. as much as 50 Earth masses for beta Pic). However, the possibility that gas, most likely secondary, is only present in little to moderate amounts, as deduced from gas detections (e.g. ~0.05 Earth masses in the beta Pic disk), remains open, too.Comment: Accepted for publication in Astronomy and Astrophysic

    The Color Distribution in the Edgeworth-Kuiper Belt

    Get PDF
    We have started since 1997 the Meudon Multicolor Survey of Outer Solar System Objects with the aim of collecting a large and homogeneous set of color data for Trans-Neptunian and Centaurs objects [...] We have a combined sample of 52 B-R color measurements for 8 Centaurs, 22 Classicals, 13 Plutinos, 8 Scattered objects and 1 object with unidentified dynamical class. This dataset is the largest single and homogeneous published dataset to date [...]. A strong (color) correlation with mean excitation velocity points toward a space weathering/impact origin for the color diversity. However, thorough modeling of the collisional/dynamical environment in the Edgeworth-Kuiper belt needs to be done in order to confirm this scenario. We found also that the Classical TNOs consist in the superposition of two distinct populations: the dynamically Cold Classical TNOs (red colors, low i, small sizes) and the dynamically Hot Classical TNOs (diverse colors, moderate and high i, larger sizes). [...] Our specific observation strategy [...] permitted us to highlight a few objects suspected to have true compositional and/or texture variation on their surfaces. These are 1998 HK151, 1999 DF9, 1999 OY3, 2000 GP183, 2000 OK67, and 2001 KA77 and should be prime targets for further observations [...]. Our survey has also highlighted 1998 SN165 whose colors and dynamical properties puts it in a new dynamical class distinct from the Classicals, its previously assigned dynamical class.Comment: Accepted for publication in Astronomical Journal (38 pages, inc. 11 figures

    Neptune Trojans and Plutinos: colors, sizes, dynamics, and their possible collisions

    Get PDF
    Neptune Trojans and Plutinos are two subpopulations of trans-Neptunian objects located in the 1:1 and the 3:2 mean motion resonances with Neptune, respectively, and therefore protected from close encounters with the planet. However, the orbits of these two kinds of objects may cross very often, allowing a higher collisional rate between them than with other kinds of trans-Neptunian objects, and a consequent size distribution modification of the two subpopulations. Observational colors and absolute magnitudes of Neptune Trojans and Plutinos show that i) there are no intrinsically bright (large) Plutinos at small inclinations, ii) there is an apparent excess of blue and intrinsically faint (small) Plutinos, and iii) Neptune Trojans possess the same blue colors as Plutinos within the same (estimated) size range do. For the present subpopulations we analyzed the most favorable conditions for close encounters/collisions and address any link there could be between those encounters and the sizes and/or colors of Plutinos and Neptune Trojans. We also performed a simultaneous numerical simulation of the outer Solar System over 1 Gyr for all these bodies in order to estimate their collisional rate. We conclude that orbital overlap between Neptune Trojans and Plutinos is favored for Plutinos with large libration amplitudes, high eccentricities, and small inclinations. Additionally, with the assumption that the collisions can be disruptive creating smaller objects not necessarily with similar colors, the present high concentration of small Plutinos with small inclinations can thus be a consequence of a collisional interaction with Neptune Trojans and such hypothesis should be further analyzed.Comment: 15 pages, 9 figures, 6 tables, accepted for publication in A&
    • 

    corecore